Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EClinicalMedicine ; 58: 101907, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2283421

ABSTRACT

Background: Inhaled molecular hydrogen gas (H2) has been shown to improve outcomes in animal models of cardiac arrest (CA). H2 inhalation is safe and feasible in patients after CA. We investigated whether inhaled H2 would improve outcomes after out-of-hospital CA (OHCA). Methods: HYBRID II is a prospective, multicentre, randomised, double-blind, placebo-controlled trial performed at 15 hospitals in Japan, between February 1, 2017, and September 30, 2021. Patients aged 20-80 years with coma following cardiogenic OHCA were randomly assigned (1:1) using blinded gas cylinders to receive supplementary oxygen with 2% H2 or oxygen (control) for 18 h. The primary outcome was the proportion of patients with a 90-day Cerebral Performance Category (CPC) of 1 or 2 assessed in a full-analysis set. Secondary outcomes included the 90-day score on a modified Rankin scale (mRS) and survival. HYBRID II was registered with the University Hospital Medical Information Network (registration number: UMIN000019820) and re-registered with the Japan Registry for Clinical Trials (registration number: jRCTs031180352). Findings: The trial was terminated prematurely because of the restrictions imposed on enrolment during the COVID-19 pandemic. Between February 1, 2017, and September 30, 2021, 429 patients were screened for eligibility, of whom 73 were randomly assigned to H2 (n = 39) or control (n = 34) groups. The primary outcome, i.e., a CPC of 1 or 2 at 90 days, was achieved in 22 (56%) and 13 (39%) patients in the H2 and control groups (relative risk compared with the control group, 0.72; 95% CI, 0.46-1.13; P = 0.15), respectively. Regarding the secondary outcomes, median mRS was 1 (IQR: 0-5) and 5 (1-6) in the H2 and control groups, respectively (P = 0.01). An mRS score of 0 was achieved in 18 (46%) and 7 (21%) patients in the H2 and control groups, respectively (P = 0.03). The 90-day survival rate was 85% (33/39) and 61% (20/33) in the H2 and control groups, respectively (P = 0.02). Interpretation: The increase in participants with good neurological outcomes following post-OHCA H2 inhalation in a selected population of patients was not statistically significant. However, the secondary outcomes suggest that H2 inhalation may increase 90-day survival without neurological deficits. Funding: Taiyo Nippon Sanso Corporation. Translation: For the Japanese translation of the abstract see Supplementary Materials section.

2.
PLoS One ; 16(11): e0257549, 2021.
Article in English | MEDLINE | ID: covidwho-1793615

ABSTRACT

Particulate generation occurs during exercise-induced exhalation, and research on this topic is scarce. Moreover, infection-control measures are inadequately implemented to avoid particulate generation. A laminar airflow ventilation system (LFVS) was developed to remove respiratory droplets released during treadmill exercise. This study aimed to investigate the relationship between the number of aerosols during training on a treadmill and exercise intensity and to elucidate the effect of the LFVS on aerosol removal during anaerobic exercise. In this single-center observational study, the exercise tests were performed on a treadmill at Running Science Lab in Japan on 20 healthy subjects (age: 29±12 years, men: 80%). The subjects had a broad spectrum of aerobic capacities and fitness levels, including athletes, and had no comorbidities. All of them received no medication. The exercise intensity was increased by 1-km/h increments until the heart rate reached 85% of the expected maximum rate and then maintained for 10 min. The first 10 subjects were analyzed to examine whether exercise increased the concentration of airborne particulates in the exhaled air. For the remaining 10 subjects, the LFVS was activated during constant-load exercise to compare the number of respiratory droplets before and after LFVS use. During exercise, a steady amount of particulates before the lactate threshold (LT) was followed by a significant and gradual increase in respiratory droplets after the LT, particularly during anaerobic exercise. Furthermore, respiratory droplets ≥0.3 µm significantly decreased after using LFVS (2120800±759700 vs. 560 ± 170, p<0.001). The amount of respiratory droplets significantly increased after LT. The LFVS enabled a significant decrease in respiratory droplets during anaerobic exercise in healthy subjects. This study's findings will aid in exercising safely during this pandemic.


Subject(s)
Air Conditioning/methods , COVID-19/prevention & control , Exercise/physiology , Particulate Matter/chemistry , Adult , Aerosols/chemistry , Air Filters , Anaerobic Threshold/physiology , COVID-19/metabolism , Exercise Test/methods , Exhalation/physiology , Female , Heart Rate/physiology , Humans , Japan , Lactic Acid/metabolism , Male , Oxygen Consumption/physiology , Respiration , Respiratory System/physiopathology , Running/physiology , SARS-CoV-2/pathogenicity , Ventilation/methods
3.
JACC. Basic to translational science ; 7(2):146-161, 2022.
Article in English | EuropePMC | ID: covidwho-1728469

ABSTRACT

Highlights • NETs have been implicated as therapeutic targets to address inflammation and thrombotic tissue damage in conditions such as sepsis, acute respiratory disease syndrome, COVID-19, and CVDs.• H2 has been clinically and experimentally proven to ameliorate inflammation;however, the underlying molecular mechanisms remain elusive.• Compared with control neutrophils, PMA-stimulated human neutrophils exposed to H2 exhibited reduced citrullination of histones and release of NET components;mechanistically, H2-mediated neutralization of HOCl produced during oxidative bursts suppresses DNA damage.• Inhalation of H2 inhibited the formation and release of NET components in the blood and BAL of the LPS-induced sepsis in mice and aged mini pigs.• H2 therapy is potentially a new therapeutic strategy for inflammatory diseases involving NETs associated with excessive neutrophil activation. Summary Neutrophil extracellular traps (NETs) contribute to inflammatory pathogenesis in numerous conditions, including infectious and cardiovascular diseases, and have attracted attention as potential therapeutic targets. H2 acts as an antioxidant and has been clinically and experimentally proven to ameliorate inflammation. This study was performed to investigate whether H2 could inhibit NET formation and excessive neutrophil activation. Neutrophils isolated from the blood of healthy volunteers were stimulated with phorbol-12-myristate-13-acetate (PMA) or the calcium ionophore A23187 in H2-exposed or control media. Compared with control neutrophils, PMA- or A23187-stimulated human neutrophils exposed to H2 exhibited reduced neutrophil aggregation, citrullination of histones, membrane disruption by chromatin complexes, and release of NET components. CXCR4high neutrophils are highly prone to NETs, and H2 suppressed Ser-139 phosphorylation in H2AX, a marker of DNA damage, thereby suppressing the induction of CXCR4 expression. H2 suppressed both myeloperoxidase chlorination activity and production of reactive oxygen species to the same degree as N-acetylcysteine and ascorbic acid, while showing a more potent ability to inhibit NET formation than these antioxidants do in PMA-stimulated neutrophils. Although A23187 formed NETs in a reactive oxygen species–independent manner, H2 inhibited A23187-induced NET formation, probably via direct inhibition of peptidyl arginine deiminase 4-mediated histone citrullination. Inhalation of H2 inhibited the formation and release of NET components in the blood and bronchoalveolar lavage fluid in animal models of lipopolysaccharide-induced sepsis (mice and aged mini pigs). Thus, H2 therapy can be a novel therapeutic strategy for NETs associated with excessive neutrophil activation.

4.
Circ Rep ; 3(5): 300-303, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1204122

ABSTRACT

Background: Patient perspectives in cardiovascular diseases (CVD) are significantly associated with clinical outcomes. Methods and Results: Among 100 patients who responded to a telephone survey in a university hospital setting in Tokyo during the coronavirus disease (COVID-19) pandemic, 20% reported depressive symptoms and 33% were hesitant to contact medical staff in the event of CVD exacerbation. Interestingly, the frequency of depressive symptoms was maintained even after a decline in the number of newly COVID-19-infected patients. Conclusions: Our telemedicine practices revealed the magnitude of our patients' mental health conditions and their hesitation to contact medical facilities in the event of CVD exacerbation.

5.
Curr Pharm Des ; 27(5): 650-658, 2021.
Article in English | MEDLINE | ID: covidwho-992999

ABSTRACT

BACKGROUND: Mounting evidence indicates that hydrogen gas (H2) is a versatile therapeutic agent, even at very low, non-combustible concentrations. The Chinese National Health and Medical Commission recently recommended the use of inhaled H2 in addition to O2 therapy in the treatment of COVID-19-associated pneumonia, and its effects extend to anti-tumor, anti-inflammatory and antioxidant actions. SUMMARY: In this review, we have highlighted key findings from preclinical research and recent clinical studies demonstrating that H2 reduces the organ damage caused by ischemia-reperfusion. We have also outlined the critical role this effect plays in a variety of medical emergencies, including myocardial infarction, hemorrhagic shock, and out-of-hospital cardiac arrest, as well as in organ transplantation. H2 is compared with established treatments such as targeted temperature management, and we have also discussed its possible mechanisms of action, including the recently identified suppression of TNF-α-mediated endothelial glycocalyx degradation by inhaled H2. In addition, our new method that enables H2 gas to be easily transported to emergency settings and quickly injected into an organ preservation solution at the site of donor organ procurement have been described. CONCLUSION: H2 is an easily administered, inexpensive and well-tolerated agent that is highly effective for a wide range of conditions in emergency medicine, as well as for preserving donated organs.


Subject(s)
COVID-19 , Reperfusion Injury , Anti-Inflammatory Agents , Humans , Hydrogen , SARS-CoV-2
6.
J Clin Med Res ; 12(10): 674-680, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-840872

ABSTRACT

BACKGROUND: Molecular hydrogen (H2) is a biologically active gas that is widely used in the healthcare sector. In recent years, on-site H2 gas generators, which produce high-purity H2 by water electrolysis, have begun to be introduced in hospitals, clinics, beauty salons, and fitness clubs because of their ease of use. In general, these generators produce H2 at a low-flow rate, so physicians are concerned that an effective blood concentration of H2 may not be ensured when the gas is delivered through a nasal cannula. Therefore, this study aimed to evaluate blood concentrations of H2 delivered from an H2 gas generator via a nasal cannula. METHODS: We administered 100% H2, produced by an H2 gas generator, at a low-flow rate of 250 mL/min via a nasal cannula to three spontaneously breathing micro miniature pigs. An oxygen mask was placed over the nasal cannula to administer oxygen while minimizing H2 leakage, and a catheter was inserted into the carotid artery to monitor the arterial blood H2 concentration. RESULTS: During the first hour of H2 inhalation, the mean (standard error (SE)) H2 concentrations and saturations in the arterial blood of the three pigs were 1,560 (413) nL/mL and 8.85% (2.34%); 1,190 (102) nL/mL and 6.74% (0.58%); and 1,740 (181) nL/mL and 9.88% (1.03%), respectively. These values are comparable to the concentration one would expect if 100% of the H2 released from the H2 gas generator is taken up by the body. CONCLUSIONS: Inhalation of 100% H2 produced by an H2 gas generator, even at low-flow rates, can increase blood H2 concentrations to levels that previous non-clinical and clinical studies demonstrated to be therapeutically effective. The combination of a nasal cannula and an oxygen mask is a convenient way to reduce H2 leakage while maintaining oxygenation.

SELECTION OF CITATIONS
SEARCH DETAIL